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Abstract

Most of the work for securing the routing protocols of mobile ad hoc wireless net-
works has been done in prevention. Intrusion detection systems play a complimentary
role to that of prevention for dealing with malicious insiders, incorrect implementation
and attack models. We present a statistical framework that allows the incorporation of
prior information about the normal behavior of the network and of network attacks
in a principled way for the detection of known and unknown attacks. For detecting
an attack as soon as possible we use quickest change detection algorithms. We use
hidden Markov models (HMMs) as a generative view of the dynamic evolution of the
hop count distribution. Our results show that simple attacks can be detected by an
anomaly detection framework. However, detection of more complex attacks requires
incorporation of prior knowledge in the HMMs.

1 Introduction

Mobile -wireless- ad hoc networks (MANETs) are particularly vulnerable to attacks on
their routing protocols. Unlike fixed networks, the routers usually do not reside in phys-
ically protected places and can fall under the control of an attacker more easily. This in-
sider can then advertise or forward incorrect routing information. Furthermore the wireless
medium makes it easier for an outsider to eavesdrop and inject fake messages. With the
injection of fabricated messages an attacker can modify the normal route establishment of
the network without the need to compromise any nodes.
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1.1 Routing attacks

An attacker who gets access to a node in the network can mount several attacks. She can
disrupt the flow of the network by dropping, corrupting or delaying the packets passing
through the compromised node. Furthermore the attacker can fabricate packets with incor-
rect information such as packet generation with fake source address, and can also modify
the routing packets by advertising false routes. A selfish node trying to avoid being used as
a router can falsely claim longer distances to other nodes, or they can try to attract as much
traffic as possible (a blackhole attack) by advertising short distances to all destinations or
by a sequence number rushing attack.

One of the attacks exploiting the wireless medium is the wormhole attack. In this case
an attacker records packets or bits at one location in the network and tunnels them to another
location by means of a single long-range directional wireless link or through a direct wired
link to a colluding attacker. At the end of the tunnel certain packets are retransmitted into
the network. The wormhole attack can be devastating to a routing protocol. For example
in DSDV if each routing advertising sent by node A were tunneled to node B (and any
data packet is not retransmitted) and vice versa, then A and B would believe that they are
neighbors. If they were not within wireless transmission range, they would be unable to
communicate. Furthermore, if the best existing route from A to B were at least 2n+2 hops
long, then any node within n hops of A would be unable to communicate with B and vice
versa [1].

1.2 The role of intrusion detection in security

In order to provide reliable routing we must design security mechanisms for MANETs.
There are three main design considerations for security: prevention, detection and response.

Most of the research for secure routing in ad hoc networks has been done in preven-
tion, i.e. the use of cryptographic keys to prevent malicious behavior. Approaches usually
require authenticated routing messages. A way to obtain authenticated routing is to use
standard digital signatures [2, 3]. For some ad hoc networks with computation, communi-
cation or battery constraints, generation and verification of digital signatures is relatively
inefficient. SEAD [4] and Ariadne [5] are efficient routing protocols where authenticated
routing is achieved without the need of digital signatures (using only symmetric crypto-
graphic primitives).

Intrusion detection systems play a complementary role to that of prevention. First, pre-
vention mechanisms always operate under certain security assumptions. If those assump-
tions are broken an attacker can bypass the prevention measures, for example SEAD re-
quires distribution of authentic public values to enable authentication of subsequent values.
If the authenticity of the public values is broken, SEAD is as insecure as DSDV. Secondly,
some attacks are easier to deal with intrusion detection than with prevention mechanisms.
For example packet dropping can be easily detected by listening promiscuously to the next
node’s transmissions. If the next node does not forward the packet, then it is misbehaving
[6]. Prevention of more sophisticated attacks such as a rushing attack or a wormhole is also
difficult, thus until efficient prevention mechanisms are designed, an intrusion detection
system with signatures or models of the attacks can provide a better cost effective solution.



Third, prevention mechanisms are designed to protect against attacks we know. Anomaly
detection can in principle detect unknown attacks.

Any automatic response to a collaborative detection of an attack might be subject to
blackmail. So ideally intrusion detection should be used in an environment supporting non-
repudiation. To provide non-repudiation we need digital signatures, and thus distributed in-
trusion detection systems should be implemented only in networks with enough resources.

1.3 Our approach

Our objective is to present a statistical framework that allows the incorporation of prior
information about the normal behavior of the network and of network attacks in a principled
way for the detection of known and unknown attacks. In order to avoid a large number of
false alarms, we have to consider robust statistical models describing a baseline behavior
for our feature of interest in MANETs. In contrast to other frameworks that allow anomaly
detection [7], we focus on the dynamic behavior of the protocol rather than using static
models.

In a highly mobile ad hoc network, as viewed by a monitoring node, the hop count is
an important statistic and in most cases can be monitored with no overhead. The evolution
of this distribution is directly related to the changes in the topology of the network. Each
configuration imposes certain constraints on the space of hop count distributions and as
the topology of the network changes from one set of configurations to the next. The space
of the configuration can be abstracted and viewed as representing the hidden states of the
network and the hop count distribution as the observations.

In terms of the intrusion detection, the basic idea is that an attacker will change the
routing information or maliciously modify the routing algorithm in such a way that our
perceived evolution of the hop count distribution differs from the its dynamics under the
“normal” conditions. When such a deviation persists, in a statistical sense to be described,
we declare that an intrusion has occurred. In order to detect the attack as soon as possible
we make use of quickest change detection theory.

2 Quickest Detection

Despite the abundance of techniques addressing the quickest detection problem, optimum
(non asymptotic) schemes can mostly be found for the case where the observations are
independent and identically distributed and the distributions are completely known before
and after the change time [8]. However in our case, a model of the dynamics of the hop
count distribution should consider that observations depend on past values, so we focus on
algorithms that consider this dependency.

2.1 Binary Detection

We follow a cumulative sum (CUSUM) procedure applicable to the case of dependent
observations of a stochastic process Yt , (t ∈ N, where t is the time index) with densities fθ1



and fθ0 under hypotheses H1 and H0 respectively [9]:

St =
{

St−1 + log

(
fθ1(yt |yt−1, ...,yk)
fθ0(yt |yt−1, ...,yk)

)}+

(1)

where yk is the first sample after the last reset, i.e., Sk−1 = 0. It is clear that this algorithm
is only a reformulation of the sequential probability ratio test (SPRT) algorithm for the

log-likelihood ratio: log
(

fθ1
(yt |yt−1,...,yk)

fθ0
(yt |yt−1,...,yk)

)
with the lower threshold selected at 0. The upper

threshold h will be selected given a false alarm rate.
Anomaly detection is usually cast as a problem of clustering: We first obtain a statistical

model fθ0 (a density function in this case) for our “normal” operation. Then we proceed
to measure how likely is the observation fθ0(Y1, ...,Yt). If it is below a certain threshold
ξ ( fθ0(Y1, ...,Yt) < ξ ), then we declare the observation Yt an anomaly. In the case of
observations in a finite set Ξ, s.t. |Ξ|= M, the alternate hypothesis can be considered as the
uniform distribution, i.e. ∀y ∈ Ξ( fθ1(y) = 1/M). This is a way of not assuming anything
about the attack and therefore it is particularly suited for detecting the attacks we do not
know of. Equation (1) can now be expressed as

St =
(
St−1 + log(1/M)− log fθ0(yk, ...,yt)+ log fθ0(yk, ...,yt−1)

)+
(2)

where ∀k (yk ∈ Ξ) .

3 Statistical model

We build a discrete Hidden Markov Model (HMM) with parameters θ = (π,A,B) for mod-
eling the evolution of hop count distributions. HMMs were selected for several reasons.
They provide an generative representation of our system as the hidden states of the HMM
can be viewed as abstractions of different spatial configurations of the mobile nodes (figure
1) and the observations as the dynamic evolution of the hop count distribution. The param-
eters of discrete state HMMs can be specified or can be estimated efficiently while keeping
a model with a low bias. The generative and intuitive nature of HMMs allows incorporation
of prior knowledge and misuse detection by providing a language model [10], i.e. a model
that provides the HMM with expert information on allowable state transitions which reflect
our knowledge on mobility. Signature-like intrusion detection can also be incorporated by
using HMM models of the attacks we already know.

As explained above, we will choose the observations to be the hop count distribution as
viewed from a given node (figure 2). For simplicity, we will assume a proactive distance
vector routing protocol such as DSDV in order to have access to all hop counts at any time.

If we have N +1 nodes, the hop count distribution at the time step k can be considered as
a vector in {0, ...,N}D: Xk = [X0

k , ...,XD−1
k ]′ (Xi

k ∈ {0, ...,N}) where D is a limit we impose
in the maximum number of hops we will consider, i.e. X 0

k is the number of disconnected
nodes, is X 1

k the number of nodes 1 hop away, ..., X D−2
k is the number of nodes D−2 hops

away and XD−1
k is the number of nodes D−1 or more hops away.

In order to consider a discrete HMM we need a way to deal with the high-dimensional



Figure 1: HMM interpretation

Figure 2: Codebook of size 10 of the hop count distribution for a 40 node ad hoc network

observation vectors Xk. The number of all possible observations is (N + 1)D−1 since we
are working with a hyperplane in (N + 1)D with constraint ∑D−1

i=0 Xi
k = N + 1. A natural

approach is to encode Xk to Yk, a member of a set of M codewords. The optimal selection
of the codewords is nontrivial and is discussed further in the full version of the paper. One
approach to obtain the codebook Ξ is to learn it from the normal operation of the network,
by using the classic LBG algorithm in which for a given fixed rate R, we try to find the
codebook that minimizes a distortion function (usually a quadratic distortion is considered).
Figure 2 shows a codebook of size 10. Learning the codebook from the normal operation
has some problems, as discussed in the full version of the paper. Another approach to is to
consider a set of M key reference distributions chosen by an expert trying to define what an
anomalous behavior can be.

4 Simulation Results

The simulations take place in a 1000x1000m2 region with 40 nodes moving at speeds of
5m/s and with a communication range of 250m. For the mobility of the nodes, we use the



Figure 3: Codeword transitions with two nodes sending bad routing information at random

Figure 4: Change detection statistic for attack 1

standard random waypoint algorithm in which the nodes select with a uniform distribution
a destination point from the region and after reaching their target they remain there for
a given amount of time (5s in our simulation) before selecting another destination. We
will be assuming that we monitor one node in which the hop count distribution is sampled
every two seconds. A total simulated time of four hours was selected. The HMM is trained
with the first 3600 samples. In the following 1800 samples the nodes continue to behave
normally and in the final 1800 samples the attack takes place.

A second mobility model considered (avw mobility) is one in a 52x42m2 U-shaped
building where there are 47 offices and 47 nodes. Each node spends most of the time in its
home office and travels with a speed of 1m/s among different offices selected at random.
Each node has a communication range of 11m. A total simulated time of one hour was
selected and the time step between measurements was 2 seconds.

The prior is initialized as a uniform distribution. The number of states is selected to
be equal to the number of observations and both matrices Aθ0 and Bθ0 are initialized with
higher values in their respective diagonal component than the rest of the values.
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Figure 5: Change detection statistic for a wormhole attack
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Figure 6: Change detection statistic when we have an HMM model of the attack

The first attack we simulated was an artificial attack to take advantage of the HMM.
Under this scenario, two nodes start sending bad routing information randomly at any given
time about their distance to any other node. The spurious pattern of the attack caused by
the random attack produces more codewords transitions as seen in figure (3). As seen in
figure (4), the attack was easily detected using equation (4).

The second scenario considers a wormhole attack, where the endpoints of the wormhole
are located at x,y coordinates (1000/3,500)m and (2000/3,500)m for the 1000x1000m2

plane. This attack was also detected using equation (4). However, we can see in figure 5
that the statistic is not robust to the change.

A way to improve the performance is by including information on the attack. We trained
another HMM (πθ1,Aθ1,Bθ1) for the attack mode. The resulting performance of this new
change detection statistic between two HMMs can be seen in figure 6.

The performance of the change detection statistic for the wormhole attack is similar to
an attack in which one node is sending bad routing information constantly. However, in
this case, a batch detection procedure by testing the likelihood of the state transitions for a
given window of time seems to perform better when we do not have an HMM of the attack.
In figure 7 we can see that the state transitions of a normal sequence have on the average a
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Figure 7: Log-likelihood of state transitions
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Figure 8: ROC curve for batch detection

higher log-likelihood value than the states transitions from the attack. Figure 8 is the ROC
curve.

Another way to deal with the problem is to build a more complex HMM. A natural gen-
eralization to avoid the dependence of the detection on the trained codebook is to consider
directly the continuous hop count distribution vector Xk ∈ R

D. To deal with this continu-
ous vector we trained an HMM with a mixture of two Gaussians with two hidden states.
With continuous observations we also need a fixed interval in R

D for defining the uni-
form probability distribution. However, we decided to estimate the mean of the likelihood
f GaussianHMM
θ0

(xn|xn−1, ...,xk) for any new time step xn, to replace the distribution log1/M.
The resulting performance is shown in figure (9).

5 Conclusions

We presented new approaches to intrusion detection using a statistical framework. For ad
hoc networks, our HMMs provide an intuitive model of the network routing behavior, and
a principled way for adding expert knowledge in the form of language models or attack
models. Simple attacks can be detected by an anomaly detection framework, however, de-



Figure 9: Change detection statistic using a Gaussian mixture output HMM

tection of more complex attacks requires incorporation of prior knowledge into the HMMs.
We are working to relax the stationary distribution assumption and deal with distributed
detection in the presence of untrusted nodes.
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